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Abstract

We compute isotope independent first and second order corrections to the Born-Oppenheimer
approximation for water and use them to predict isotopic shifts. For the diagonal correction, we
use icMRCI wavefunctions and derivatives with respect to mass dependent internal coordinates
to generate the mass independent correction functions. For the non-adiabatic correction, we use
scaled SCF /CIS wave functions and a gencralization of the Handy method to obtain mass indepen-
dent correction functions. We find that including the non-adiabatic correction gives significantly
improved results compared to just inchiding the diagonal correction when the Born-Oppenheimer
potential encrgy surface is optimized for Hp 160). The agreement with experimental results for deu-
terium and tritium containing isotopes is nearly as good as our best empirical correction, however

the present correction is expected to be more reliable for higher, uncharacterized, levels.



I. INTRODUCTION

Starting with the work of Polyansky et al.,[1] empirical potential energy surfaces of water
had reached a level of accuracy which enabled one to detect the need for mass dependent
corrections arising from the breakdown of the Born-Oppenheimer approximation. The first
attempt to predict the mass corrections was carried out by Zobov et al.[2], who calculated
the diagonal (first order) correction at the SCF level. They used this with an ab initio PES
and found some improvement, although the errors were still too large to be unambiguous.
Subsequently we[3] determined an empirical PES which reproduced Hy %0 energy levels
very well, but when we applied the Zobov et al. correction, wo found that it did not predict
the necessary isotopic shifts. Thus we determined an empirical mass dependent correction
to our PES using data from HDO and D,O, and this greatly improved the results for all
the other isotopomers, however there remained discrepancies for the tritinm isotopes, and
because of the paucity of data for D, O, this correction is only reliable for low lyving levels.[3]

It would be most advantageous to the analysis and assigrment of experimental spectra
if reliable ab initio predictions of the mass dependent corrections is made available. This
is because to a large extent, all of the information about the Born-Oppenheimer PES is
contained in the results of a single isotopomer. Experimentally, it is much simpler to deal
with a single isotopomer. For example, one can obtain essentially pure samples of H,O
and just obtain the spectrum of that species. However, it is not possible to obtain a pure
sample of HDO, for collisions generate H,O and D,0O as wel’, and so one has to deal with
interfering H,O and D,O lines on top of the more complex spectrum that HDO has due
to its lower symmetry. Molecules such as O3 give rise to even more complicated mixtures
of isotopomers. Analyzing and reliably assigning experimer tal spectra is a great deal of
work. If theoretitions could reliably predict isotopic shifts, then that would be a much more
efficient means of generating spectral data.

We compute the mass dependent corrections to the Born-Oppenheimer approximation
using the second order perturbation theory result of Bunker and Moss[4] with ab initio wave-
functions to compute the required matrix elements.[5] The first order correction is a mass
dependent correction to the PES, sometimes called the Born-Oppenheimer diagonal correc-
tion (BODC). The second order correction leads primarily to a mass dependent correction

to the nuclear kinetic energy operator. This is usually called the non-adiabatic correction.



We have recently developed tools to compute these corrections and applied them to HyO.[5]
There we found that the SCF approximation used by Zobov to compute the first order
correction is not reliable. In the present work we report predictions of isotopic shifts for
deuterium and tritium containing isotopes using a newly optiraized Born-Oppenheimer PES
including non-adiabatic effects and a more accurate first order correction. We also derive a
generalization of the Handy method for the diagonal correction to compute non-adiabatic

correction functions from mass independent cartesian derivative matrix elements.

II. OPTIMIZING THE PES

In our previous work,[3] we obtained the empirical PES V7 as
";emp — COA‘/"SZ + CcoreA‘/'corc + CbaszsALrbaszs 4 ‘A‘jrcst7 (1)

with ¢, ¢@m¢, ¢ and the 18 parameters in AVTest determined by a least squares fit
to 5493 ro-vibrational transitions with J < 5. This calculation did not include any non-
adiabatic effects. In the kinetic energy operator, we used the nuclear masses. For the first
step in the present work, we re-optimize A7 erore besis and the 18 parameters in Alrest
including non-adiabatic effects. This produces the PES we call V™.

The non-adiabatic corrections were obtained as an extension of our previous work.[5]
Since the functional form used for the corrections does not extrapolate properly and in the
present work we are considering higher energies, we extended cur grid in R) and R, to 0.775-
1.425 A in steps of 0.05 A, and © to 50 - 170 degrees in steps of 10 degrees, and the energy
cut off was 20,000 cin~!. We fit these (693 unique) 1292 poirts to the same polynomial as
in our previous work. In these calculations, the ground electronic state is treated using the
SCF method, the excited states by the singles CI method, and the results were scaled by
1.1. This scale factor was obtained by matching the computed and experimental rotational
g factors.[5] We used the aug-cc-pVTZ basis.[6]

In our optimizations of the parameters in our PES, we use different experimental data
than we used previously. In previous work we fit ro-vibrational transition energies. One
problem with this is since ro-vibrational transition energies are differences in energy levels, it
is hard to judge the amount of unique data one is fitting. Furthermore, there is the possibility

of inconsistencies in ro-vibrational energies that make up the transition energies. So in the



present work, we use a different strategy. We start by compiling a list of ro-vibrational
encrgies. These were determined as follows. We took the transition frequencies given in
HITRAN 96,[7] and augmented this with the more recent data from the literature.[8-10]
We then iteratively solved for ro-vibrational energies with respect to the zero point energy.
This gave many estimates of the ro-vibrational encrgies, and we only retained consistent
energics, which were defined as energies with at least 2 determinations, and a root-mean-
square deviation from the average of the determinations less than 0.001 cm™!. This resulted
in a total of 1688 energy levels having J in the range 0 — 8. In future work, we would use
the compilation of Tennyson et al.[11] Now one desirable feature of our previous fit was that
the errors had very weak dependence on J. To retain this feature, we weight rotational
energies more than vibrational cnergies. We achieve this by organizing the ro-vibrational
levels into groups which all have the same vibrational quantum number assignment. Then
in each group, we subtracted the J = 0 energy from the higher J energies. If the J = 0
energy has not been determined, then the lowest J level that has been determined is used
instead. In the fit then, there is a relatively small number of “purely” vibrational energics
and a much large number of rotational energies. We fit these with equal weights.

For the present work we use a subset of the above data. This is to reduce the cost
of the calculations and because we are not using hyperspherical coordinates.[3] We find
our algorithm has difficulty converging highly excited statcs when we use r; and 7, as
coordinates.[5] Thus we consider only levels which correspond to roots 1-30 in a given JPS
block. This results in a total of 1060 levels, of which 19 are “purely” vibrational levels and
1041 are rotational levels. We made our best attempt to ensure the proper matching of
experimental and theoretical levels, but inadvertently some miss-assignments were made.
We attempted to automatically detect these during the least squares process by computing
the average absolute deviation from the average of the difference between the observed
and calculated levels. We multiplied this by ten, and used this as a cut-off criterian to
greatly diminish the weights for levels which had greater difference between the observed
and calculated levels. In our final fit, 33 points were deleted by this rule, and the weighted
root-mean-square (rms) error of the fit was 0.054 cm™'. In this fit, we used the PES Vemp
and the kinetic energy operator including non-adiabatic effects to generate the wavefunctions
used as basis functions in the least squares fit.

In the course of this work, we also carried out optimizations not including non-adiabatic
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effects for comparison. We found only slight changes to our previous PES,[3] and that the
errors produced with and without non-adiabatic corrections vere essentially the same. The
only differences were in the values of the paraneters. Of great interest was that when we
included non-adiabatic effects, the optimum value of the parareters 518 and ¢ came out
to be essentially unity, and so in the final fit, we constrained them to be unity. It should be
noted that we did not include the BODC or relativistic corrections[12] to the PES in these
optimizations. Initial trials including these corrections yielded essentially zero coefficients
for the corrections. However, those calculations were carried out using the Zobov et al.[2]

BODC, so if the calculations were repeated with the accurate BODC, this might not happen.

III. BODC

In Ref. 5, we reported calculations of the BODC of water using both CASSCF and SCF
wavefunctions. For bending levels, the CASSCF and SCF results were very similar, but
for the stretching levels, there were big differences. In the present work we have extended
our capabilities and report the BODC computed at the icMRCI level, which should provide
very accurate results. See Ref. 5 for the equations involved in the calculations. These
calculations are carried out with a modified version of MOLPRO2000.1.[13] Two additional
modifications were required to carry out these calculations. First of all, we had to extend the
diabatic orbital scheme to perform rotations among the virtual orbitals. Secondly, we had to
evaluate two-particle expectation values using the icMRCI wavefunction. This was achieved
by modifying the CI code to perform a CI iteration using the converged wavefunction, but
using different one and two-electron integrals. This is complicated by the fact that the
two-clectron repulsion integrals are symmetric with respect to interchanging the indices
for the basis functions of one electron, while for the two-particle operators we require, the
integrals are skew symmetric with respect to interchanging the indices. Nonetheless we have
successfully made these changes.

When computing the BODC, one has three choices. One can use the Handy method,
(14] which for a triatomic requires nine derivatives, six of which can be evaluated using
C, svmmetry, and three which must be run in C; symmetry. Alternatively, one can carry
out calculations using internal coordinates that depend on the isotopomer. For example,

for Radau coordinates, this requires three derivatives and all the calculations can be run



using C symmetry.[5] Then the cost per point is less, but one has to perform additional
caleulations for each isotopomer of interest. Since in the present work we are interested in a
large number of isotopomers, this would seem to favor the Handy method. However, avoiding
the C| calculations can be a big advantage. We therefore seex economics by combining the
methods. This is done as follows. We know that for isotopomer ABC, the Handy method
gives the BODC as
Aave ey e ;FC, (2)
where m 4 is the mass of nuclei A, and F is the correction function of atom A, etc. If
we knew the BODC for three lincarly independent isotopomers, we can solve for the F,
where av is A, B, or C. Specifically, we will carry out calcuations of the BODC using Radau
coordinates for Ho'O, H,'®0O, and HD'"O. For the first two isotopomers, we only carry
out calculations with the first HO bond length greater than the second, while for the last
isotopomer, we do not make this restriction. We then solve for the F, at cach geometry,
and fit them to the functional form
F, = exp{~8[(n— Te)2 + (7 -7'8)2]} Z C?Jk[('rl - 7'6)/7'6]2{(7'2 - Te)/re]j[cos(g) - ('05(98)]k (3)
ijk
and then use Eq.2 to evaluate the BODC for each isotopome:. We used the same values of
8, e, and 6, as in our previous work,[3] and included all terms with 7+ j + & < 6. It should
be noted that 4 was erronously described[3] as having the value 2 a;?. It actually has the
value 2 A=2. The rms errors for the fits to F,, were 1.8 x 107% au and 7.7 x 1072 au, resulting
in rms errors in AV of less than 0.003 cm™!. The lincar coeflicients ¢fy; were determined by
equally weighted least squares fits. Due to numerical errors, the fits did not quite have the

desired symmetry, so the coefficients were symmetrized after the fitting.

IV. GENERALIZING THE HANDY METHOD

In this section we generalize the Handy method for the BODC to enable one to compute
the non-adiabatic correction. We start first with the kinetic energy operator for the nuclei

in an arbitrary space fixed frame:

h? 1 2
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where m, is the mass of nuclei ¢, and 7 runs over cartesian components. We can re-write

R o \'1 9 5
r- b Z( axm) Lo (5)
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this in the form

where t means complex conjugate acting to the left. Now we can compute the non-adiabatic
correction functions as reported previously,[5] using the space fixed cartesians of Eq. 4. In

this case one obtains the correction
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where W, is the Born-Oppenheimer energy of electronic state n, and v, i1s the Born-
Oppenheimer electronic wavefunction for electronic state n. When computing the deriva-
tives, the origin used for the electronic wavefunctions is fixed. It should be noted that in
general, the Cmﬂ1 Cl(; , and C© are dependent on the geonretry of the nuclei.

It will be convenient to express the coefficients in Eq.6 ‘n terms of mass independent

Lo 2 - . . .
quantities. Now n’tamarCi(O;Q, is independent of mass, so that part is straightforward. For

the other quantities, we need a partial decomposition, so that
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and
0) _

(15)

T Ma ma
The transformation from atomic cartesians to internal c¢oordinates with total angular

momentum eigenfunctions takes place in several steps. We now consider each step in turn.
A. Mass factor transformation
We next introduce the coordinate transformation

X =xM, (16)

where x is the matrix of cartesian internal coordinates, and M is a matrix of mass factors.[15

17] We assume that the final vector is for the center of mass, and M is invertible. Let M

denote the inverse of M. Then since

Z 0581.13 (17)

Am 3

where 3 indexes the internal coordinates, the kinetic encrgy operator becomes
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It is easy to show that
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B. Decouple Center of Mass

We next perform a transformation which takes the electronic coordinates and the coordi-
nates for the nuclear center of mass and forms new coordinates consisting of the electronic
coordinates with their origin the nuclear center of mass, anc. the coordinates for the total
center of mass.[5] This transformation zeros the coupling between the center of mass and
all other coordinates, and requires the inclusion of the mass polarization term([5] when com-
puting matrix elements. Nevertheless, the numerical values of the matrix clements and the

remaining correction functions are unchanged.

C. Euler internal

We next transform from the space fixed nuclear cartesians to body fixed coordinates
defined by

x = ATx*, (24)

with A a rotation matrix[17] parameterized by the Euler angles af7, the superscript T

denotes transpose, and x°° the z embedding of Sutcliffe and Tennyson,[18] parameterized

by the lengths 7, and r,, the angle x, and the embedding parameter a. The matrix A can

be easily determined by the relation
A=V(EI)Vx), (25)

where V is a 3 x 3 orthogonal matrix constructed from the first two vectors of its argument.
We take the first column of V to be the unit vector parallel to the first vector of its argument,
the third column to be the unit vector obtained by Schmidt orthogonalizing the first vector
from the second, and the second column the cross product of the other two columns.
Then we introduce[19]
9
O0xip

= Aji(a, 5, V)ngz()z- (26)
3 7

with Ol and gpg given in Table I. The coordinates [ consist of the radial coordinates 7, and
ro, the bending angle x, and the nuclear angular momentum operators Re. In the table, I¢

is the £ component in the nuclear body-fixed frame of reference of the total nuclear angular



momentum, with its sign reversed to satisfy normal communtation relations. Substituting

Eq. 26 into Eq. 18 easily yields the desired kinetic energy operator:

h? . - -
T =3 0/GuOr, (27)
w
with
L1
Gy = Z Gt G- (28)
apk MY

We must also remember to include the volume element obtaned from the Jacobian deter-
minant when computing matrix elements over vibrational-rotational functions. This volume
clement is not to be acted on by any of the O, when T is written as in Eq. 27. We can also
write Eq. 27 in the more conventional form
N R
T = ? % GulOl()ll. (29)

As before, we obtain the non-adiabatic correction

AT =S 01600, + Y [O}Qﬁ”* " Qﬁ”(‘)l} el (30)
1 !
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and
¢ = ¢, (33)

D. Rotational invariance

Finally, we fix the electronic positions with respect to the nuclear body-fixed axis. This

results in the elimination of the nuclear angular momentum operator via the relation
Rte = Je + Le, (34)

where € specifies the cartesian component in the nuclear body-fixed frame of reference, R
is the nuclear angular momentum with sign reversed to satis’y normal communtation rela-

tions, J is the total angular momentum with sign reversed to satisfy normal communtation
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relations, and L is the electronic angular momentum. Since the electronic wavefunction
rotates with the molecule, Je will have no effect on the elect ronic wavefunctions, thus ma-
trix elements which were computed as derivatives with respect to the Euler angles are now

computed as matrix elements of Lg, but the numerical values are unchanged.

E. Wavefunction Factorization

So far we have presented results where the radial coordinates have volume elements 72dr;.
It is convenient to introduce the factorization ¥, = @, /(r7r,) and solve for @, rather than

for ¥,. This changes some of the coefficients in Eq. 30. Specifically Q(O) is replaced with
= (0 ~ (1 ~ (1 - (2 (2}, o ~ (2
=20 ey 20 s + G 4 €5 5+ 2085 o (35)

and then le) is replaced by
(1) A(2) ~(2)
C, Cp/ri=Cylre (36)

F. Summary

In summary, one computes mqny Cl-((‘f;a,, Cl-(ii,, C((f;), using the appropriate modifications
of Egs. 7,8,9 on a grid. 'Then for a particular isotope, onc forms ij}a,, Cl-(;), and C
(Eq. 14,15), then applies the mass transformation of Egs. 21 and 22, then the rotation and
coordinate transformation of Eqs. 31 and 32, and finally the factorization transformation
of Egs. 35 and 36. Omne could attempt to fit mama/Ci(j;a, etc directly, but since these
quantities depend on the choice of origin, it is not clear what functional form to use. For

this part of the calculation, we fit the Q;,Q,), Q,(I) and Q(O) calculated at 366 geometries with

165 parameters to a functional form like the one described previously.[3]

V. RESULTS

Now that we have the icMRCI BODC, we can test how well the BODC computed using
the CASSCF wavefunction[5] is converged. In Table II we give our results obtained using
the SCF BODC. the CASSCF BODC, and our new icMRCI BODC. All calculations used
the ce-pVTZ basis.[20] These calculations use the un-optimized PES 175% as in Ref.5. To

be consistent with our previous work,[5] we label the vibrational levels with local mode
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quantum numbers. We sce that we obtain quite similar results from all methods for bending
overtones, but much larger differences for stretching overtones. The corrections obtained
from the CASSCF method are overestimates for the stretches, for the icMRCI results always
move toward the SCF results. Nonetheless, the SCF results are not reliable for stretches.

We now turn to our results using the new PES. In Table III, we give the errors for low
lving levels of the various isotopomers from three different calculations: the results labeled
Vs gre taken from Ref.[3] and are obtained using the empirical mass dependent correction,
the results labeled BODC use the PES Vo™ from Ref.[3] and the icMRCI BODC from the
present work, and finally the results labeled Noad use the newly optimized PES V™™ and
include the icMRCI BODC and the non-adiabatic corrections. Since the PES did not include
the BODC in its optimization, we subtract the Hy 16() BODC from the BODC computed
for the isotopomer of interest. In this table, the levels are labeled by normal mode quantum
numbers. Comparing the results from BODC and Noad, we see that in all cases but one, the
Noad results are an improvement over the BODC results, and in some cascs significantly so.
The exception is the HO stretch in HTO, but both calculations do quite well for this level.

We can see how close we are to our goal of accurate ab initio predictions of isotopic
shifts by comparing the errors to the average errors obtained for Hy %0, which was used to
optimize the PES. The rms errors for the H 16() levels in Table I1T is 0.04 cn™'. There are
five errors larger than this in the table for the other isotopomers. Of the five, three are for
the anti-symmetric stretch of Dy 180, T, %0, and HO stretch of HT 160y, and the largest is
—0.10 cm~". These are probably not significantly larger than we expect. The remaining two
are larger: 0.18 cm™! for the symmetric stretch of D 160 and 0.22 cm™! for the symmetric
stretch of Ty 80. Since these errors are larger and are for the same mode, we think that
these are real, significant, discrepancies. We are not sure of the origin of these differences,
but we suspect that it is due to a deficiency in our calculations.

It is interesting to also compare our present best results to the previous ones using the
empirical mass correction. In all but four cases, the empirical correction gives smaller errors.
In these four cases, the errors are all small, except for the HO stretch in HT !°0, where
}mass gives —0.14 em ™! and our best ab nitio results are —0.10 em™!. In contrast, in the
two cases mentioned above where the ab initio calculations gave large errors, the empirical
mass correction gives significantly smaller errors: 0.00 em ! and —0.11 cm™!. However, on

the whole, the two results are very similar, which is a very ercouraging result.
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VI. CONCLUSIONS

We have computed the isotopic shifts for the water molecule including both the diagonal
and non-adiabatic corrections to the Born-Oppenheimer approximation. We find that both
corrections are significant, and on the whole, the isotopic shifts are predicted quite well for

low lying levels. The exceptions are the symmetric stretching fundamentals of Dy 10 and

T, 10, where the errors are about 0.2 cm L

There are four possible sources of the disagreement: (i) the Born-Oppenheimer PES is
not accurate enough, i.e. cancellation of errors allow most ¢f the isotopomers to be fitted
accurately, but not all, (ii) the BODC is not as accuratc as we think — possible sources of
error are the use of the cc-pVTZ basis and icMRCI wavefurctions, (iii) the non-adiabatic
correction is not as accurate as we would like, either due to the inability of the scaling to
make up deficencies in the SCF/CIS method, the basis sct is too small so that incorrect
geometry dependence is obtained, or the fit is not good encugh, or (iv) the experimental
data is incorrect. Work is ongoing to test these possibilities. We are attempting to compute
the best possible ab initio PES[21] as well as generalizing onr non-adiabatic code to more

accurate wavefunctions. Nonetheless, the future is very bright for accurate predictions of

1sotopic shifts.
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TABLE I: Coordinate transformation matrix.

i o0s 2 R R, R
— sinay 0 —cosax/ri 0 (1 — a)cosax/ir 0
0 0 0 —sin(l — a)x/(iry sin x) 0 —cos(l = a)x/(iry sin x)
cos ay 0 —sinayx/r; 0 (~ —a)sinayx/ir 0
0 sin(l —a)x cos(l—a)x/r 0 acos(l — a)x/iry 0
0 0 0 —sinay/(ire sin x) 0 cos ax/(iry sinx)

0 cos(l —a)x —sin(l —a)x/r2 0 —asin(l — a)x/irs 0
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TABLE 11: BODC for H,O from various electronic wavefunctions (in cm” ).

Wy SCF CASSCF icMRCI
0(0,0)+ 0.00 0.00 0.00
1(0,0)+ —0.50 ~0.46 —0.45
2(0,0)+ ~1.00 —0.94 ~0.91
0(1,0)+ ~0.05 0.39 0.28
0(1,0)- 0.13 0.62 0.47
3(0,0)+ ~1.52 ~1.46 —1.40
1(1,0)+ —0.49 ~0.01 ~0.11
1(1,0)- ~0.31 0.24 0.09
4(0,0)+ ~2.08 ~2.03 ~1.95
2(1,0)+ ~0.94 —0.42 —0.50
2(0,1)- -0.74 ~0.16 ~0.29
0(2,0)+ ~0.05 0.96 0.67
0(2,0)- 0.09 1.19 0.83
0(1,1)+ 0.21 1.22 0.90
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TABLE III: Errors and experimental energies for low-lying vibretional levels of various isotopic

substitutions (in cm™1).

Source H,%0 D0 D,1%0 15,160 HT'%0O
010
y/rnass -0.03 —0.04 —0.03 0.00 —0.01
BODC 0.02 0.00 —0.04 —0.04
Noad 0.05 0.01 0.00 —0.02 0.01
exp. 1594.78° 1403.48¢ 1178.38b 995.33¢ 1332.481
020
yymass 0.00 -0.01 0.00
BODC 0.20 0.06
Noad 0.05 0.07 0.00
exp. 3151.63° 2782.01¢ 2336.84°
100
ynass 0.01 0.02 0.00 —-0.11 —0.04
BODC 0.51 0.62 0.39 0.31
Noad —(.04 0.00 0.18 0.22 0.03
exp. 3657.04° 2723.68¢% 2671.65¢ 2237.157 2299779
001
ymass —-0.03 —-0.01 —-0.01 —0.01 —0.14
BODC 0.76 0.58 0.29 -0.07
Noad 0.03 0.02 —-0.07 ~0.08 —0.10
exp. 3755.96¢ 3707.47¢ 2787.72° 2366.60" 3716.58f
SRef. 7
bRef. 22
‘Ref. 23
IRef. 24
¢Ref. 25
fRef. 26
9Ref. 27
hRef. 28
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